An artificial vasculature for adaptive thermal control of windows

نویسندگان

  • Benjamin D. Hatton
  • Ian Wheeldon
  • Matthew J. Hancock
  • Mathias Kolle
  • Joanna Aizenberg
  • Donald E. Ingber
چکیده

Windows are a major source of energy inefficiency in buildings. In addition, heating by thermal radiation reduces the efficiency of photovoltaic panels. To help reduce heating by solar absorption in both of these cases, we developed a thin, transparent, bio-inspired, convective cooling layer for building windows and solar panels that contains microvasculature with millimeter-scale, fluid-filled channels. The thin cooling layer is composed of optically clear silicone rubber with microchannels fabricated using microfluidic engineering principles. Infrared imaging was used to measure cooling rates as a function of flow rate and water temperature. In these experiments, flowing room temperature water at 2 mL/min reduced the average temperature of a model 10 10 cm window by approximately 7–9 1C. An analytic steady-state heat transfer model was developed to augment the experiments and make more general estimates as functions of window size, channel geometry, flow rate, and water temperature. Thin cooling layers may be added to one or more panes in multi-pane windows or as thin film non-structural central layers. Lastly, the color, optical transparency and aesthetics of the windows could be modulated by flowing different fluids that differ in their scattering or absorption properties. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

متن کامل

Designing an adaptive fuzzy control for robot manipulators using PSO

This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...

متن کامل

Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...

متن کامل

An indirect adaptive neuro-fuzzy speed control of induction motors

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013